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• Ontology Based Approach
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Figure 4: Metamodeling Language Used by lQuery

patterns would repeat, e.g. navigation through multiple link chains,

or filtering by some condition. To make transformations more read-

able, the redundant parts need to be abstracted away. lQuery func-

tions help to do it.

4.3 lquery

4.3.1 Example Model

In Figure 5 we can see a simple model and an instance diagram.

We will use it throughout the rest of the chapter for demonstrating

lQuery constructs. The model is on the left; it consists of two classes:

Person and Animal. A person has name and age attributes and associa-

tions to other persons that are his parents and children, and an associ-

ation to Animals that are his pets. On the right side, we can see some

instances of this model.

Typical queries that we would like to make on this model are: get

instances of a particular class (e.g. all persons), get instances with a

particular attribute value (e.g. persons with name “John”), or get all

pets of a person’s children. If we needed to perform these queries

using only the repository API, then the code would mostly contain
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patterns would repeat, e.g. navigation through multiple link chains,

or filtering by some condition. To make transformations more read-

able, the redundant parts need to be abstracted away. lQuery func-

tions help to do it.

4.3 lquery

4.3.1 Example Model

In Figure 5 we can see a simple model and an instance diagram.

We will use it throughout the rest of the chapter for demonstrating

lQuery constructs. The model is on the left; it consists of two classes:

Person and Animal. A person has name and age attributes and associa-

tions to other persons that are his parents and children, and an associ-

ation to Animals that are his pets. On the right side, we can see some

instances of this model.
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instances of a particular class (e.g. all persons), get instances with a

particular attribute value (e.g. persons with name “John”), or get all

pets of a person’s children. If we needed to perform these queries

using only the repository API, then the code would mostly contain
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or filtering by some condition. To make transformations more read-

able, the redundant parts need to be abstracted away. lQuery func-

tions help to do it.

4.3 lquery

4.3.1 Example Model

In Figure 5 we can see a simple model and an instance diagram.

We will use it throughout the rest of the chapter for demonstrating

lQuery constructs. The model is on the left; it consists of two classes:

Person and Animal. A person has name and age attributes and associa-

tions to other persons that are his parents and children, and an associ-

ation to Animals that are his pets. On the right side, we can see some

instances of this model.
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classes, or as a note symbol with «equivalent» stereotype connected

to the equivalent classes. The OWL class disjointness is modeled by

the disjoint relation, and it can be visually represented in the diagram

either as a connector with «disjoint» stereotype linking two classes,

or as a note symbol with «disjoint» stereotype connected to the dis-

joint classes (see Figure 11 where the disjointness of Person, Level and

Course classes is asserted). There are also other options for denoting

the class equivalence and disjointness using the notion of class expres-

sion that will be explained later.

In what follows, we describe the details of our proposed UML notation for 
rendering and editing of OWL ontologies. We note that, as it is common already for 
UML class diagrams, also here in a number of cases we allow alternative graphical 
and/or textual notations for the same OWL construct. This allows the user to tune the 
look of a diagram to his/her taste, as well as to use the rendering option that is most 
suitable to the size and the structure of the particular ontology. 

3.1. Equivalent and disjoint classes and properties 

The simplest extensions to the UML metamodel are equivalent and disjoint classes 
and properties which are introduced in the extended UML by eqClass and disjClass 
relations from UML Class to UML Class and eqProperty and disjProperty relations 
from UML Property to UML Property. 

The OWL class equivalence is modeled by the eqClass relation, and it can be 
visually represented in the diagram in two ways – either as a connector with 
<<equivalent>> stereotype linking two classes, or as a note symbol with 
<<equivalent>> stereotype connected to all equivalent classes. The OWL class 
disjointness is modeled by the disjClass relation, and it can be visually represented in 
the diagram either as a connector with <<disjoint>> stereotype linking two classes, or 
as a note symbol with <<disjoint>> stereotype connected to all disjoint classes (see 
Figure 5 where the disjointness of Person, Level and Course classes is asserted). We 
note that the class disjointness can be asserted also by means of attaching a disjoint 
tag to the GeneralizationSet already present in the original UMLOWLCore 
metamodel. There are other options available for denoting the class equivalence and 
disjointness using class expression notion that is explained later. 

 

 
Fig. 5 A mini-university ontology (UMLOWLCoreExtended notation) 

 
The OWL property equivalence is modeled by the eqProperty relation, and it is 

represented by an equivalent property compartment in the property visualization; to 

Figure 11: “mini-university” ontology (UMLOWLCoreExtended notation)

The OWL property equivalence is modeled by the equal relation be-

tween Property class, and it is represented by an equivalent property

compartment in the property visualization. For example, to assert

that the property p1 is equivalent to the property p2, we add a {=

p2} compartment to the p1 visualization (we may add a {= p1} com-

partment to the p2 visualization, as well). A similar notation, using a

<> symbol instead of = represents OWL property disjointness being

modeled by disjoint relation between Property class. For instance, in

Figure 11 the properties teaches and takes linking the classes Teacher

and Course are disjoint.
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joint, then it is preferable to group the subclass relations visually with

a “fork” symbol that possesses the disjoint label. This is a much more

compact representation than the alternative notation where each sub-

class line is by itself, and there are explicit disjoint labeled edges be-

tween all subclasses. By using the visual refactoring, the graphical

reorganization can be done with one click.

Automatic layout and search facilities are crucial when ontologies

become large (more than 100s of classes), and their management be-

comes more difficult. A good automatic layout is significant for un-

derstanding large ontologies. Also, searching for the specific element

in large ontologies may become irritating without an appropriate ser-

vice. Therefore several alternative automatic layout modes and search-

ing mechanism allowing finding the necessary element by the value

of one of its text fields (e.g. searching a class by its name) is supported

in our editor.

with Protégé. The editor is built using TDA [14, 15] technology. Figure 6 shows an 
African Wildlife ontology [16] in our editor. 

Graphical refactoring is one of the most important services that allows modifying 
graphical notation without changing semantics as long as the same concept can be 
expressed through different constructs. This feature allows the user to choose the most 
compact graphical format depending on the context and taste. One of the typical 
situations illustrating the need for graphical refactoring is generalization and fork: if 
there is a single super class with multiple incoming generalization lines, a fork can be 
added to reduce multiple lines into a single line, and vice versa. 

Automatic layout and search facilities are crucial when ontologies become large 
and their management becomes more difficult. A good automatic layout is significant 
for understanding large ontologies, whereas searching for the specific element in large 
ontologies may become irritating without an appropriate service. Therefore several 
alternative automatic layout modes and searching mechanism allowing finding the 
necessary element by the value for one of its text fields, e.g. searching class by its 
name is supported in our editor. 

 

 

Fig. 6 An African Wildlife ontology in OWLGrEd editor 
 
A more advanced service is full interoperability with Protégé 4 [9], an editor 

widely used by ontology developers. The interoperability is implemented via custom 
Protégé plug-in that allows to send and receive via TCP/IP socket an active ontology 
between our editor and Protégé. In both directions ontologies are sent in interchange 
format, but generally any OWL serialization is acceptable. Interoperability allows 
ontology developers to use Protégé without changing their habits and only afterwards 

Figure 12: An African Wildlife ontology in OWLGrEd editor

A more advanced service is full interoperability with Protégé [11],

a tool that is widely used by ontology developers. The interoperability

is implemented via a custom Protégé plug-in that allows to send and

receive (via TCP/IP socket) an active ontology between our editor

and Protégé. The interoperability service allows ontology developers

to use Protégé without changing their habits and only afterwards to
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Figure 13: OWLGrEd downloads by cities outside Latvia from Nov 1st, 2013

till May 31st, 2015

that this familiarity would enable them to adopt easily the new for-

malism we propose.

The application of UML class diagram notation to OWL is not an

entirely new idea; it has been implemented in the TopBraid Composer

[15]. However, that implementation is based on a simplified UML

class diagram model, it lacks graphical editing facilities, and the avail-

able graphical services are limited. Some other solutions have been

proposed for the graphical UML-style representation of OWL ontolo-

gies; the most notable is ODM (see [6, Chapter 14]) that defines a

UML profile for OWL. The main advantage of ODM approach is the

possibility to use existing UML tools for ontology modeling. Mean-

while, the price for this compatibility is a more verbose notation that

does not facilitate comprehensibility.

6.5 conclusions

In this chapter, we created an OWL metamodel that is a constraint

layer above UML class diagram metamodel. This will enable trans-

formation languages to work simultaneously with OWL constraints.

We also developed a graphical notation for OWL ontologies that is an
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The lQuery language also needs to be integrated with the OWL

metamodel from the previous chapter. The metamodel is extended

with a class lQueryExpression, that represents an lQuery selector ex-

pression. There is a link lQueryEquals from the intuitive class Class

to the class lQueryExpression. This link means that the intuitive class

contains all the instances that are returned by the connected lQuery

selector, when it is executed on the entire repository. The extended

metamodel is shown in Figure 16.
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Figure 16: OWL metamodel extension with lQuery constructor classes

The lQuery expressions are serialized in ontology files by using

OWL annotation properties [8, Annotation Property]. Annotation

properties allow to attach arbitrary information to any OWL entity

or assertion. The lQuery expressions are always added to a named
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class. We introduce an OWL annotation property lQueryEquals whose

domain is an OWL Class, and the range is lQueryExpression. When

the ontology is exported from the OWLGrEd ontology notation to an

OWL file, the lQuery expressions will be exported as annotations. Fig-

ure 18 shows the example from Figure 17 serialized in the Manchester

Syntax.expressions written in the Manchester syntax, the lQuery expressions are enclosed in 
the symbols «» (see Figure 4).

Fig. 4. Demonstration of the OWLGrEd syntax extension for the lQuery expressions

The lQuery expressions are serialized in ontology files using OWL annotation 
properties [8]. Annotation properties allow to attach arbitrary information to any 
OWL entity or assertion. The lQuery expressions are always added to a named class.  
We introduce an annotation property lQueryEquals whose domain is an OWL Class, 
and range is lQueryExpression. When the ontology is exported from the OWLGrEd 
ontology notation to an OWL file, the lQuery expressions will be exported as such 
annotations. Figure 5 shows the example from Figure 4 serialized in the Manchester 
syntax.
Datatype: lQueryExpression
AnnotationProperty: lQueryEquals

----------
Class: PassedStudent

Annotations:
lQueryEquals "Student:has(/grade/course@creditPoints:sum() >= 20)"^^lQueryExpression
rdfs:comment "Students that have earned at least 20 credit points"

Fig. 5. lQuery expressions as annotation properties in Manchester syntax

3.2 Some Examples from the University Ontology

Now that we have seen a survey of the lQuery expressions and how they are shown 
graphically, we will look at some examples from the University Ontology that we 
were not able to define using OWL class expressions. First let us return to the 
example of students without known courses from the previous section. Figure 6 
shows the same ontology fragment but with an additional class StudentWith-
NoKnownCourses that defines the instances we could not get with OWL (this class 
belongs to the category of IntrospectiveClasses). Before we analyze the lQuery 
expression that describes that class, let us recall that the OWL definition of class 
InactiveStudents – “not (takes some Course)” – does not describe the instances we 
want because it will contain only instances for which it can be proved that they cannot 
have a link takes, but in this situation there is no information from which to prove that 
the individual s1 could have a link or not. Therefore it is not classified as either 
InactiveStudent or ActiveStudent. In contrast, the lQuery selectors work only with the 
information that is directly known and assumes that everything that is not known is 
false.

Figure 17: Demonstration of the OWLGrEd syntax extension for the lQuery

expressions

expressions written in the Manchester syntax, the lQuery expressions are enclosed in 
the symbols «» (see Figure 4).

Fig. 4. Demonstration of the OWLGrEd syntax extension for the lQuery expressions

The lQuery expressions are serialized in ontology files using OWL annotation 
properties [8]. Annotation properties allow to attach arbitrary information to any 
OWL entity or assertion. The lQuery expressions are always added to a named class.  
We introduce an annotation property lQueryEquals whose domain is an OWL Class, 
and range is lQueryExpression. When the ontology is exported from the OWLGrEd 
ontology notation to an OWL file, the lQuery expressions will be exported as such 
annotations. Figure 5 shows the example from Figure 4 serialized in the Manchester 
syntax.
Datatype: lQueryExpression
AnnotationProperty: lQueryEquals

----------
Class: PassedStudent

Annotations:
lQueryEquals "Student:has(/grade/course@creditPoints:sum() >= 20)"^^lQueryExpression
rdfs:comment "Students that have earned at least 20 credit points"

Fig. 5. lQuery expressions as annotation properties in Manchester syntax

3.2 Some Examples from the University Ontology

Now that we have seen a survey of the lQuery expressions and how they are shown 
graphically, we will look at some examples from the University Ontology that we 
were not able to define using OWL class expressions. First let us return to the 
example of students without known courses from the previous section. Figure 6 
shows the same ontology fragment but with an additional class StudentWith-
NoKnownCourses that defines the instances we could not get with OWL (this class 
belongs to the category of IntrospectiveClasses). Before we analyze the lQuery 
expression that describes that class, let us recall that the OWL definition of class 
InactiveStudents – “not (takes some Course)” – does not describe the instances we 
want because it will contain only instances for which it can be proved that they cannot 
have a link takes, but in this situation there is no information from which to prove that 
the individual s1 could have a link or not. Therefore it is not classified as either 
InactiveStudent or ActiveStudent. In contrast, the lQuery selectors work only with the 
information that is directly known and assumes that everything that is not known is 
false.

Figure 18: lQuery expressions as annotation properties in Manchester syn-

tax

7.2.2 Some Examples from the University Ontology

Now we will consider some examples from the University Ontology

that we were not able to specify by using OWL class expressions.

First, let us return to the example of students without known courses

from the previous section. Figure 19 shows the same ontology frag-

ment but with an additional class StudentWith-NoKnownCourses. The

class defines the instances that we could not obtain with OWL (the

class belongs to the category of IntrospectiveClasses). Let us recall that

the OWL definition of the class InactiveStudents – “not (takes some

Course)” – does not describe the instances we want, because the class

will contain only instances for which it can be proved that they cannot

possess a link takes. However, now we are in a situation where there

is no information from which we could prove that the individual s1

could possess a link or not. Therefore, it is not classified as either In-

activeStudent or ActiveStudent. In contrast, the lQuery selectors work
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