Quantum automaton implementation. Circuit optimization

Aliya Khadieva

University of Latvia QWorld Association

2022/04/27

Areas of work

Automata models Affine finite automata Quantum finite automata

Affine finite automata

Affine finite automata - Generalization of QFA

- SUBSETSUM problem is verified by an integer-valued Affine Nondeterministic Automaton such that every member is accepted with probability 1 and every non-member is accepted with probability at most $\frac{1}{2l+1}$ for some $t \in \mathbb{Z}^+$.
- Every unary language $L \subseteq \{a\}^*$ is verified by an Affine Nondeterministic Automaton with error bound 0.155.

Khadieva, A., Yakaryılmaz, A. (2021, October). Affine automata verifiers. In International Conference on Unconventional Computation and Natural Computation (pp. 84-100). Springer, Cham.

Quantum finite automata

Existing Results on Quantum finite automata

Existing Results

- Let *p* be a prime
- $\blacksquare \ \textit{MOD}_p = \{ \textit{a}^j | \textit{j} \text{ is divisible by } p \}$

Existing Results

- Let *p* be a prime
- $MOD_p = \{a^j | j \text{ is divisible by } p\}$

Any 1-way DFA recognizing MOD_p has at least p states.

There is much more efficient QFA

Existing Results

- Let *p* be a prime
- $MOD_p = \{a^j | j \text{ is divisible by } p\}$

Any 1-way DFA recognizing MOD_p has at least p states.

There is much more efficient QFA

Ambainis, Freivalds. 1998

 MOD_p can be recognized by a *QFA* with $O(\log p)$ states.

Big-O constant depends on required probability of correct answer.

For $x \in MOD_p$ the answer is always correct with probability 1.

Ambainis, Nahimovs, 2008

For any $\epsilon>0$, there is a *QFA* with 4 $\frac{\log 2p}{\epsilon}$ states recognizing MOD_p with probability at least 1 $-\epsilon$.

QFA construction

Initially, $|q_0 q_1 \dots q_{\log d}\rangle |q_{target}\rangle = |000..0\rangle |0\rangle$ On the left end-marker, $|000..0\rangle |0\rangle \rightarrow H^{\log d} \otimes I \rightarrow = \frac{1}{\sqrt{d}}(|0\rangle + |1\rangle + \dots + |d\rangle) |0\rangle$

The automaton U reading an input symbol rotates $|q_{target}\rangle$ on angles $\alpha_i = \frac{2\pi k_i}{\rho}$ for each $i \in \{0...d\}$, where i corresponds to the state of the quantum register.

QFA construction

For each i, $\alpha_i = \frac{2\pi k_i}{p}$

Recognition

Claim

If the input word is a^{j} and j is divisible by p, then the automaton accepts with probability 1.

Claim 2

If the input word is a^{j} and j is NOT divisible by p, then the automaton accepts with probability

$$\frac{1}{d^2} \left(\cos \frac{2\pi k_1 j}{p} + \cos \frac{2\pi k_2 j}{p} + \dots + \cos \frac{2\pi k_d j}{p} \right)^2$$

Let k_1, \dots, k_d be a sequence of integers, where $d = c \log p$

d states for determining d transformations

for each 'a' $|q_{target}\rangle$ is rotated on angles

state 0 state 1

$$\frac{\pi k_0}{p}$$
 $\frac{2\pi k}{p}$

state d

$$\frac{2\pi k_d}{p}$$

Let k_1, \dots, k_d be a sequence of integers, where $d = c \log p$

d states for determining d transformations

for each 'a' $|q_{target}\rangle$ is rotated on angles

state 0 state 1

$$\frac{\pi k_0}{p}$$

$$\frac{\pi k_1}{\kappa_1}$$

$$\frac{2\pi k_d}{D}$$

How to differentiate these states?

Let k_1, \dots, k_d be a sequence of integers, where $d = c \log p$

d states for determining d transformations

for each 'a' $|q_{target}\rangle$ is rotated on angles

state 0 s

state 1

$$\frac{2\pi k_0}{n}$$

$$\frac{1}{2}\frac{\pi k_1}{2}$$

$$\frac{2\pi k_d}{p}$$

How to differentiate these states?

Transform the state i to get a state $|1..11\rangle$ and apply control rotation on an angle α_i

$$| 000 \rangle \xrightarrow{X \otimes X \otimes X} | 111 \rangle$$

$$| 011 \rangle \xrightarrow{X \otimes X \otimes X} |100 \rangle \neq |111 \rangle$$

The implementation of the multi-qubit-controlled rotation is VERY expensive!

The implementation of the multi-qubit-controlled rotation is VERY expensive!

$$q76_{0}$$
 — $q76_{1}$ — $q76_{2}$ — $q76_{3}$ — $q76_{4}$ — $q76_{5}$ — $q76_{6}$ — $q76_$

MCXGate

- MXGate() recursively implemented multi-qubit-controlled cnot operation
- An amount of cnot-gates of the circuit with n control qubits
- $S_{cx}(n) = 4 * S_{cx}(n/2) = 4 * (4 * (\cdots 4 * S_{cx}(2)) \cdots) = 4^{\log n 1} * 6 \approx n^2$ cnot operations
- denote the computational complexity of a cnot operation with one controller by $S_{cx}(1)$
- $S_{cx}(2) = 6 * S_{cx}(1)$
- $S_{cx}(3) = 14 * S_{cx}(1)$

Toffoli gate decomposition

Grey codes:

controlled $R_V(\theta)$ decomposition

$$\Sigma(n) = 2^n S_{rot}(n) = 2^n * 2 * S_{cx}(n) \approx 2^{n+1} n^2 S_{cx}(1)$$

Circuit optimization. Ancilla qubit

- k is a number of 'active' qubits

$$\Sigma(n,k) << \Sigma_{old}(n)$$

U is rotation on some γ and V is rotation on $\gamma/2$ $U=V^2$

For 2 angles $S(3) = 2S_{rot}(3) = 4S_{cx}(3) = 56 \cdot S_{cx}(1)$

$$S(2) = 24 \cdot S_{cx}(1)$$

$$S'(3) = 4S_{rot}(1) + 2S_{cx}(2) + S_{rot}(2) = 32 \cdot S_{cx}(1)$$
 $q41_0$
 $q41_1$
 $q41_2$
 $q41_3$
 $q41_3$
 $q41_3$
 $q41_3$
 $q41_3$
 $q41_3$
 $q41_3$

$$S'(2) = 12 \cdot S_{cx}(1)$$

For 4 angles

$$S'(3) = 8S_{rot}(2) + 8S_{cx}(1) + 2S_{rot}(2) =$$

= 128 · $S_{cx}(1)$

For 4 angles

$$S''(3) = 68 \cdot S_{cx}(1)$$

For 4 angles
$$S(3) = 2 \cdot S_{2angles}(3) = 64 \cdot S_{cx}(1)$$

- If 2^{n-1} angles and n controllers, then
- $S(n) = 2^n(1 + (n-1)^2) \cdot S_{cx}(1)$
- The whole circuit complexity is
- $\Sigma_{new}(n,k) = 2^{n-k+1}(n-k)^2 + 2^{n+1}(1+k^2),$
- when $\Sigma_{old}(n,k) \approx 2^{n-k+1}(n-k)^2 + 2^{n+1}(k+1)^2$

Thank you!