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The definition of biomolecular data

> Biomolecular data is generated through molecular biology experiments,
particularly in high-throughput experimental methods.

> Current methods, including single-cell and -omics experiments, generate
data that absolutely requires extensive machine interpretation.
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Biomolecular interaction data

> Molecular methods are increasingly capable of producing not only part lists
of nucleic acids and proteins, but entire interactomes.

> Systematizing interaction data into functional networks is crucial to
understanding the actual functions of the cell's molecular machinery.
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> PROBLEM: even with a lot of
data, networks remain
challenging to meaningfully
analyze.

(Sorrells et al. 2015)



Graph-based studies of networks

> Network biology is focused on the analysis of
graphs generated by linking either recorded or
inferred interaction data.

> Biomolecular networks generated from this
data can then be studied further with methods
such as:

> Topological examination via graph properties

> Integrative comparisons with other data
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Gene regulatory networks

> Gene regulatory networks or GRNs are constructed from data about
transcriptional regulatory interactions, with genes serving as nodes and
interactions as edges.

> (Gene expression (transcription) is one of the fundamental mechanisms of life
and is regulated extensively through biological mechanisms.

GENE 1 GENE 2 GENE 3 GENE 4

DNA

mm transcription factor binding site
in promoter region

b coding DNA

O transcription factor > (SCh“tt et al. 201 5)



Motifs in regulatory networks

* Topological analysis in regulatory FFL DFFLUP DFFLDowWn cz c3
networks often relies on
overrepresented subgraphs, or
network motifs.

* Despite early enthusiasm,
generally insufficient to derive
consistent conclusions about Fig. 1. Generalized forms of commonly considered network motifs.
network function.
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Fig. 2. The bi-fan unit, bi-fan motif and bi-fan array, with variants for gene and protein pairs.



Motifs as applied to paralogs

Paralogs are genes with a
shared origin, duplicated at
some point in their evolutionary
history.

The bi-fan motif is noticeably
enriched for paralogs in GRNSs,
iIndicating that evolutionary
relatedness might lead to
symmetry in regulatory
networks.
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Fig. 3. All possible 3-vertex motifs in a directed graph with respect to a gene pair. Black and gray vertices
denote two members of a given gene pair in a particular orbit of the motif. Variations also include 4-vertex
motifs with “twinned” positions where a bi-fan unit is embedded, denoted by a gray vertex overlapping a
black vertex. The motifs shown include FFLs (PG5), feedback loops (PG4), bi-fan motifs (PG2-7 and
PG3-7) as well as bi-fan units (PG0-6 and PGO0-T).



Motifs as applied to paralogs

Observing the symmetry in — — —
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Fig. 6. The ratio of symmetrical feed-forward loops to asymmetrical loops as observed in ohnologue
(O, n = 29), non WGD paralogue (P, n = 9) and unrelated (R, n = 38) pairs of TFs in yeast. Ratios are
considered separately for symmetry at X, Y and Z positions. Differences in means were assessed for
statistical significance by pairwise Wilcoxon tests corrected for multiple comparisons.



Motifs as applied to paralogs

Furthermore, when
examining symmetry
within paralog classes,
paralogs within the
species for baker’s yeast
as well as C. elegans
showed increased
symmetry compared to
genes which only shared
a protein family.

5. cerevisiae paralogues (n=2707) C. elegans paralogues (n=7463)
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Fig. 7. Interaction overlap for PG3 motifs (including bi-fan motifs) in worm and yeast networks for
different paralogue classes. Differences in means were assessed for statistical significance by pairwise
Wilcoxon tests corrected for multiple comparisons.

Notes: Abbreviations: O — ohnologue, SPF — same protein family, PWS — paralogue within species,

SG — split gene.



Topological symmetry due to relatedness?

* While functional implications for pure network topology are hard to pinpoint,
linking topology to ancestry directly through symmetry could form the basis
of a new network analysis approach.
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Abstract
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Current high-throughput experimental techniques make it feasible to infer gene regulatory interactions at the whole-genome level with

reasonably good accuracy. Such experimentally inferred regulatory networks have become available for a number of simpler model organisms
such as 5. cerevisiae, and others. The availability of such networks provides an opportunity to compare gene regulatory processes at the whole
genome level, and in particular, to assess similarity of regulatory interactions for homologous gene pairs either from the same or from different

species.

We present here a new technique for analyzing the regulatory interaction neighborhoods of paralogous gene pairs. Our central focus is the

analysis of 5. cerevisiae gene interaction graphs, which are of particular interest due to the ancestral whole-genome duplication (WGDY) that



Further questions on regulatory networks

> Extending basic knowledge of interaction topology.
> Regulatory changes across time periods and within disparate spaces.
> Efficient integration of various experiments into a single knowledge base.

> Deriving conclusions from biological networks useful in predictive
applications.



Hybrid modeling approaches

> Most GRN models are Boolean: an interaction exists or it does not.

> Actual regulatory functionality is dynamic: regulatory proteins bind to specific
sites in particular concentrations dictated by many interdependent systems,
and activities are often concentration-dependent.

> Fully dynamic models for complex networks are impractical to model, which
creates a need for hybrid models: their more straightforward elements are
Boolean while dynamic modeling is used at decisive points.



Finite state linear models

> The finite state linear model is built on }
several elements which represent a gene

> Binding sites

and its corresponding product: > E @
D, Demas

> Substance generator -
> Control function bin_ding cont_rol substance
sites  function generator
> Each element is adaptable to permit either a \ v J
boolean or a dynamic implementation of . Pbromoter y
parts of the network. g“g’rfl o

> (Schlitt et al. 2007)



Infection b ‘i ‘
Bacteriophage A / s
> A well-understood virus that can be ®. D
. , o
practically modeled on its own. N4 3
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> Acts as a temperate bacteriophage, | = | Lysogenic cyce :

either destroying its E. coli host (lysis) e

or integrating itself into the host genome it e Gl

and laying dormant (/ysogeny). b e S a—_—
> Possesses a well-characterized Z /e’

molecular switch that determines entry
into lysis or lysogeny.

(Jamal et al. 2018)



The lytic/lysogenic switch

> Dependent on fewer than 20 genes to
operate characterized by competition
between two key factors:

> Q antiterminator, the lytic determinant,

> cll, the lysogenic determinant.

> The simplicity of the switch allows us
to efficiently diagram the entire state
space of the regulatory network.
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An FSLM fOr )\ bCII | Db _@

> The lytic/lysogenic switch can be modeled
entirely with an FSLM, with the primary
dynamic elements being the complex binding -
process for the promoters pR and pL.

£
DA

> Qur FSLM allows for various analyses of the —
network, including the possibility for a variety NS P—<ﬁ>
of starting conditions that could model, for e
example, multiplicity of infection. ?{—@
bOL2| 3 PL il
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> (Ruklisa et al. 2019)



Insights from the A FSLM

>

Our modeling approach allows for several
interesting observations.

Notably, the FSLM allows us to find
attractors in a biomolecular network which
in the case of the bacteriophage map well
to the lytic and lysogenic states.

These attractors can be studied, which
allows us to evaluate the key conditions
required for their establishment.




Insights from the A FSLM

>

Furthermore, our model allows us to detect
additional states potentially outside of a strict
lytic/lysogenic dichotomy.

The model we use is additionally quite
receptive to additional information, allowing
us to model further variables according to our
needs.

The FSLM can generate testable predictions
about phage behavior possible to confirm in a
practical setting.
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Hybrid modeling: where next?

> We intend to continue updating our phage model and adapting it to new
contexts and viruses such as the Mu bacteriophage.

> Using a flexible enough set of starting conditions and modeling adaptations,
we could feasibly model phage “voting”, a process which is known to occur
within a bacterium infected with multiple phages.

> At least one publication on the topic should be forthcoming by June.



Summary

>

Graph-based methods for the interpretation of biomolecular data are broadly
useful in deriving systematic molecular knowledge.

Topology-based analyses, while limited, can still be mapped to actual
biological properties.

For more in-depth modeling, development of hybrid models that can handle
the logic and complexity of biiological networks is crucial.

Viral models, being largely autonomous subunits inside of a more
complicated host, are ideal for hybrid model development.



Thank you!
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