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The definition of biomolecular data
 Biomolecular data is generated through molecular biology experiments, 

particularly in high-throughput experimental methods.

 Current methods, including single-cell and -omics experiments, generate 
data that absolutely requires extensive machine interpretation.



Biomolecular interaction data
 Molecular methods are increasingly capable of producing not only part lists 

of nucleic acids and proteins, but entire interactomes.

 Systematizing interaction data into functional networks is crucial to 
understanding the actual functions of the cell’s molecular machinery.

 (Sorrells et al. 2015)

 PROBLEM: even with a lot of 
data, networks remain 
challenging to meaningfully 
analyze.



Graph-based studies of networks
 Network biology is focused on the analysis of 

graphs generated by linking either recorded or 
inferred interaction data.

 Biomolecular networks generated from this 
data can then be studied further with methods 
such as:

▹ Topological examination via graph properties

▹ Integrative comparisons with other data

(Sarajlić et al. 2016)



Gene regulatory networks
 Gene regulatory networks or GRNs are constructed from data about 

transcriptional regulatory interactions, with genes serving as nodes and 
interactions as edges.

 Gene expression (transcription) is one of the fundamental mechanisms of life 
and is regulated extensively through biological mechanisms.

 (Schlitt et al. 2015)



Motifs in regulatory networks

 Topological analysis in regulatory 
networks often relies on 
overrepresented subgraphs, or 
network motifs.

 Despite early enthusiasm, 
generally insufficient to derive 
consistent conclusions about 
network function.



Motifs as applied to paralogs

 Paralogs are genes with a 
shared origin, duplicated at 
some point in their evolutionary 
history.

 The bi-fan motif is noticeably 
enriched for paralogs in GRNs, 
indicating that evolutionary 
relatedness might lead to 
symmetry in regulatory 
networks.



Motifs as applied to paralogs

 Observing the symmetry in 
feed-forward loops in yeast 
showed a noticeable 
increase of symmetrical 
motifs among paralogous 
pairs compared to randomly 
selected gene pairs.

 The difference was 
especially pronounced in a 
set of paralogs traceable to a 
whole genome duplication.



Motifs as applied to paralogs

 Furthermore, when 
examining symmetry 
within paralog classes, 
paralogs within the 
species for baker’s yeast 
as well as C. elegans 
showed increased 
symmetry compared to 
genes which only shared 
a protein family.



Topological symmetry due to relatedness?

 While functional implications for pure network topology are hard to pinpoint, 
linking topology to ancestry directly through symmetry could form the basis 
of a new network analysis approach.

 Our findings were 
published in the Journal 
of Bioinformatics and 
Computational Biology 
Vol. 18, No. 3.



Further questions on regulatory networks
 Extending basic knowledge of interaction topology.

 Regulatory changes across time periods and within disparate spaces.

 Efficient integration of various experiments into a single knowledge base.

 Deriving conclusions from biological networks useful in predictive 
applications.



Hybrid modeling approaches
 Most GRN models are Boolean: an interaction exists or it does not.

 Actual regulatory functionality is dynamic: regulatory proteins bind to specific 
sites in particular concentrations dictated by many interdependent systems, 
and activities are often concentration-dependent.

 Fully dynamic models for complex networks are impractical to model, which 
creates a need for hybrid models: their more straightforward elements are 
Boolean while dynamic modeling is used at decisive points. 



Finite state linear models
 The finite state linear model is built on 

several elements which represent a gene 
and its corresponding product:

▹ Binding sites

▹ Substance generator

▹ Control function

 Each element is adaptable to permit either a 
boolean or a dynamic implementation of 
parts of the network.

 (Schlitt et al. 2007)



Bacteriophage λ
 A well-understood virus that can be 

practically modeled on its own.

 Acts as a temperate bacteriophage, 
either destroying its E. coli host (lysis) 
or integrating itself into the host genome 
and laying dormant (lysogeny). 

 Possesses a well-characterized 
molecular switch that determines entry 
into lysis or lysogeny.

 (Jamal et al. 2018)



The lytic/lysogenic switch
 Dependent on fewer than 20 genes to 

operate characterized by competition 
between two key factors:

▹ Q antiterminator, the lytic determinant,

▹ cII, the lysogenic determinant.

 The simplicity of the switch allows us 
to efficiently diagram the entire state 
space of the regulatory network.

 (Oppenheim et al. 2005)



An FSLM for λ
 The lytic/lysogenic switch can be modeled 

entirely with an FSLM, with the primary 
dynamic elements being the complex binding 
process for the promoters pR and pL.

 Our FSLM allows for various analyses of the 
network, including the possibility for a variety 
of starting conditions that could model, for 
example, multiplicity of infection.

 (Rukliša et al. 2019)  



Insights from the λ FSLM 
 Our modeling approach allows for several 

interesting observations.

 Notably, the FSLM allows us to find 
attractors in a biomolecular network which 
in the case of the bacteriophage map well 
to the lytic and lysogenic states.

 These attractors can be studied, which 
allows us to evaluate the key conditions 
required for their establishment.



Insights from the λ FSLM 
 Furthermore, our model allows us to detect 

additional states potentially outside of a strict 
lytic/lysogenic dichotomy.

 The model we use is additionally quite 
receptive to additional information, allowing 
us to model further variables according to our 
needs.

 The FSLM can generate testable predictions 
about phage behavior possible to confirm in a 
practical setting.

(Rukliša et al. 2019)  



Hybrid modeling: where next?
 We intend to continue updating our phage model and adapting it to new 

contexts and viruses such as the Mu bacteriophage.

 Using a flexible enough set of starting conditions and modeling adaptations, 
we could feasibly model phage “voting”, a process which is known to occur 
within a bacterium infected with multiple phages.

 At least one publication on the topic should be forthcoming by June.



Summary
 Graph-based methods for the interpretation of biomolecular data are broadly 

useful in deriving systematic molecular knowledge.

 Topology-based analyses, while limited, can still be mapped to actual 
biological properties.

 For more in-depth modeling, development of hybrid models that can handle 
the logic and complexity of biiological networks is crucial.

 Viral models, being largely autonomous subunits inside of a more 
complicated host, are ideal for hybrid model development.



Thank you!
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