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Introduction

Generalization and Systematicity

Systematic Generalization, what does this mean?

m Algorithms (fully systematic)

m Classification
m Categorization (can be formal or "fuzzy": prototypes, etc)
m Inheritance, is-a relationships

m Analogies

m X (in some context) can be viewed as ...
m X (in some sense) behaves similarly to ...

Proving a theorem requires algorithmic and categorical
reasoning. Theorizing (inventing/discovering a new
theorem or theory) often involves analogical thinking.
Natural language makes extensive use of all of the above.
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Introduction

Generalization and Systematicity

Santoro et al. 2021 - Symbolic Behavior in Artificial
Intelligence [14]

d’Avila Garcez & Lamb 2020 - Neurosymbolic Al: The
3rd Wave [5]

Goyal & Bengio 2020 - Inductive Biases for Deep
Learning of Higher-Level Cognition [6]

Hupkes et al. 2020 - Compositionality Decomposed:
How do Neural Networks Generalise? [10]

Kirk et al. 2021 - A Survey of Generalisation in Deep
Reinforcement Learning [12]
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Source: Hupkes et al. 2020 - Compositionality Decomposed: How do Neural Networks Generalise? [10]

Definition
(a) Systematicity Recombine constituents that have not been seen together during training
(b) Productivity Test sequences longer than ones seen during training
(c) Substitutivity Meaning unchanged if a constituent is replaced with something equivalent
(d) Localism The meaning of local parts are unchanged by the global context
(e) Overgeneralization Can handle exceptions to rules and patterns?

Definitions from: https://evjang.com/2021/12/17/1ang- generalization.html
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Generalization in Deep RL
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Kirk et al. 2021 - A Survey of Generalisation in Deep Reinforcement Learning [12]
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Introduction

Generalization in Deep RL
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Kirk et al. 2021 - A Survey of Generalisation in Deep Reinforcement Learning [12]
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Environments for Experiments

m MiniGrid
B https://github.com/maximecb/gym-minigrid
m TextWorld

B https://github.com/microsoft/TextWorld
m Microsoft Research blog about TextWorld

m MiniHack

B https://github.com/facebookresearch/minihack
m Facebook Al Research blog about MiniHack
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https://github.com/microsoft/TextWorld
https://www.microsoft.com/en-us/research/project/textworld/
https://github.com/facebookresearch/minihack
https://ai.facebook.com/blog/minihack-a-new-sandbox-for-open-ended-reinforcement-learning
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MiniGrid Example — Sparse Rewards

Exploration in Environment with Sparse Reward

Key No external reward

when agent wonders around.
when agent picks the key

when agent opens all doors

when agent opens the locked door

Agent
(partial observability) until the agent reaches the goal

facebook Artific}

lllustration from https://https://yuandong-tian.com/ucl_dark_talk_2021.pdf
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MiniGrid Example — A More Difficult Task

And more complicated situations..

Many doors are locked

Need to move obstacles around

facebook Artificial Intelligence | Goal Keys are hidden in the boxes

Figure reproduced from https://https://yuandong-tian.com/ucl_dark_talk_2021.pdf
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TextWorld — Game Generation
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Fig.3 from Coté et al. 2019 - TextWorld: A Learning Environment for Text-Based Games [3]

(click here for list of available challenges)
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see an animated example
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Learning Systematic Action Policies

How can we build and train models that learn to act in
ways that generalize to previously unseen environments
or situations?

And that display compositional systematicity, e.g. by

being able to reuse sub-skills in new combinations when
appropriate?
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Learning Systematic Action Policies

(Reinforcement-/Imitation-/Meta-/Continual-/Curriculum-/...etc)

Meta-Learning

Imitation Learning and Offline RL

Continual / Lifelong Learning

Curriculum Learning (curiosity = auto-curriculum)
Hindsight Experience Replay

space planning

m Explicit long-term memory, KGs
Hierarchical RL
Hybrid/neuro-symbolic, neuro-algorithmic

Deep Learning for Systematic Generalization Guntis V. Strazds December 22, 2021
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l Inner loop J

Ny Outer loop

Copied from Fig.1 of Botvinik et al. 2019 - Reinforcement Learning, Fast and Slow [1]
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Learning Systematic Action Policies

Meta-Learning: Meta-Training, Meta-Testing

“Slow” Learning About Learning

Phases of Typical Meta-Learning Deployment

Outer Loop
Meta-Train | | Meta-Train Meta-Test Meta-Test
Training Testing Training Testing
Inner Loop
“Fast” “Slow” “Fast” Testing
“Fast” Learning
Agent
Observation Reward Action
0€0 reR a€A(t)
m
o | IF
3 Ps.at)
L e s’
ses
Environment

Khetarpal et al. 2020 - Towards Continual Reinforcement Learning A Review and Perspectives [11]
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Learning Systematic Action Policies

Continual RL and Transfer-Learning

Setting Multiple Domains | Multiple Required | Universal Master | Non-stationary
Of Deployment Skills Policy Evolution
Domain Adaptation J X X X
Transfer Learning J J X ‘/
Meta-Training and Meta-Testing v v X X
Multi-task Learning J \/ J X
Continual (Lifelong) Learning J \/ J ‘/

Khetarpal et al. 2020 - Towards Continual Reinforcement Learning A Review and Perspectives [11]
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Learning Systematic Action Policies

Continual Reinforcement Learning

[ Continual Reinforcement Learning Approaches ]
Explicit Knowledge Retention ] —l Leverage Shared Structure I [ Learning to Learn
Latent Parameter Storage ] -{ Modularity & Composition ] [ Context Detection ]
Distillation Based ) po{__State Abstractions Focused ] [ Leaming to Adapt

~{ Skill Focused ]

Figure 5: Taxonomy of Continual RL Approaches: A diagram illustrating different clusters of
approaches for continual RL, highlighting prominent threads of research within each family.

Khetarpal et al. 2020 - Towards Continual Reinforcement Learning A Review and Perspectives [11]
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UNIVERSITY OF LATVIA From Hamrick 2019 - Analogues of mental simulation and imagination in deep learning(7]
And: Hamrick et al. 2020 - On the role of planning in model-based deep reinforcement learning [9
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Learning Systematic Action Policies

Simulation-based inference

Bayesian Ci

with Monte Carlo sampling

optional active learning

i ayesian i
with learned summary statistics

Fig. 1.

optional active learning

with Monte Carlo sampling

8.z

proposal

6,z

augmentst
simulator.

optional active learning

with Inference Compilation

sampling

Amortized surrogates
trained with augmented data

proposal

,—lalaugmen

X, t(x,2), r(,2)

optional active learning

(A-H) Overview of different approaches to simulation-based inference.

Cranmer et al. 2020 - The frontier of simulation-based inference [4]
(See also: Mohamed et al. 2020 - Monte Carlo Gradient Estimation in Machine Learning [13])
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Learning Systematic Action Policies

Modular and Hierarchical RL, Mixture of Experts

A Scer}i(\w)
History (fi.-1)
Manager = Dﬂ
Metacontroller Manager
Controller = Koo
. . (Kar)
Action selection
Switch
Experts = /
Simulator e ./ l \
modules World (f) Experti; ExpertE; .. Experti)
Opinic’m (en)
Switch: routes mim(.-)
. Performance loss ( Lp
aC'[IOhS to a Resource 0ss (Li) e
simulator or to ey ()
the World Histry ()
Metacontroller agent
Hamrick et al. 2017 - Metacontrol for Adaptive I ion-Based Optimization [8]
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Veli¢kovi¢ & Blundell - 2021 - Neural algorithmic reasoning [15]
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Figure 7: The proposed algorithmic reasoning blueprint. First, an algorithmic reasoner is
trained in the encode-process-decode fashion, learning a function g(P(f(z))) ~ A(Z), for a
target combinatorial algorithm A; in this case, A is breadth-first search. Once trained, the
processor network P is frozen and stitched into a pipeline over natural inputs—with new
encoder and decoder f and g. This provides an end-to-end differentiable function that has
no explicit information loss, while retaining alignment with BFS.
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Reproduced from Cappart et al. 2021 [2]
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Tools and Frameworks

What I'm currently doing: updating my workbench

m Huggingface Transformers, Datasets
m SalinA: Sequential Learning of Agents
m FAIR xFormers
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Ideas & Research Goals

"This might work..."
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Learning Systematic Action Policies

Note on Mega-scaling vs. Inductive biases

Sutton’s "bitter lesson from 70 years of Al research™’
Given exponentially increasing computing resources,
general purpose learning and search methods end up,
over a time span only slightly longer than a typical
research project, outperforming knowledge-intensive,
hand-crafted approaches.?

But the scale of many current SoA models is now beyond
the reach of most academic researchers. So what can we
do?

1
http://www.incompleteideas.net/IncIdeas/BitterLesson.html

2See this blog for counterpoint re successful algorithmic methods based on human understanding
Deep Learning for Systematic Generalization Guntis V. Strazds December 22, 2021 < 24/30 >
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Ideas & Research Goals

Using ideas from Velickovi¢ & Blundell - 2021 - Neural
algorithmic reasoning [15, 16]

m Modular neuro-algorithmic software
m Mimicking the general structure of TW Oracle
m Demonstrate:
Systematic and productive generalization
(by reliably solving TextWorld tasks)
Transfer-adaptation:
(by learning to interpret 'noisy’ raw textual observations by
training outer model with neuro-algorithmic core trained
using ’‘clean’ ground-truth or semantic observations)
Generalization from TextWorld to MiniGrid
(by adapting or retraining a subset of sub-modules)
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Thank You.

( to be continued... )
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