Short seed quantum-proof extractors with large output

Avraham Ben-Aroya Amnon Ta-Shma Tel-Aviv U.

Introduction

Randomness Extractors

E: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a strong ϵ -extractor for $(X,\rho(X))$ if $| E(X,U_d) \circ U_d \circ \rho(X) - U_{m+d} \times \rho(X)|_{tr} < \epsilon$

E is a strong ε -extractor for Π if it is a strong ε -extractor for all $(X,\rho(X)) \in \Pi$

Variants

Name	(Χ, ρ (Χ)) ∈ Π
extractor	$H_{\infty}(X) > k$
Quantum-proof extractor	$H_{\infty}(X;\rho) > k$
Quantum-proof extractor for flat sources	X is flat on 2^{k_1} elements, $H_{\infty}(X;\rho) > k_2$
Quantum-proof extractor against bounded storage	H_∞(X) > k , ρ on b qubits

Classical extractors are not necessarily quantum proof. [GavinskyKempeKerenidisRazdeWolf] **Conditional min-entropy**

Conditional guessing-entropy: $H_{g}(X;\rho) = k \iff sup_{M} Pr[M(\rho(X)) = X] = 2^{-k}$

Conditional min-entropy: $H_{\infty}(X;\rho) = -\min_{\sigma} \min\{\lambda : X \circ \rho(X) \le 2^{\lambda} I \otimes \sigma\}$

[KoenigRennerSchaffner]: same quantity!

Privacy amplification

- Quantum-proof extractors suffice for privacy amplification.
- Essential component in many QKD protocols.

Previous results in a glance

Techniques for constructing classical extractors

Technique	Reference (sample)
Norm-2 based	(almost) Pairwise-ind [IIL,NZ,SZ] Fourier [Folklore]
Source Reconstruction	NZ – Trevisan RM – TZS, SU, U
Expanding one bit to many bits	Trevisan
Condense+ high-entropy solution	Reconstruction based – [TUZ] Algebraic – [GUV]

A sample of techniques for constructing quantum-proof extractors

Technique	Reference (sample)	
Norm-2 based	(almost) Pairwise-ind, [KonigMaurerRenner, TomamichelSchaffnerSmithRenn er] Fourier[FehrSchaffner]	Ω(min(k,m)) seed length
Source Reconstructio n	NZ – Trevisan RM – TZS, SU, U	O(log(n)) seed Constant error
Expanding one bit to many bits	Trevisan [DeVidick, DePortmannVidickRenner]	O(log(n)) seed k ^{1-ε} output
Condense+ high-entropy	What we do (try to do) here.	Hope to get: O(log(n)) seed Ω(k) output

One bit extractors are quantum proof [KonigTerhal]

- The challenge is that the adversary may choose a POVM based on E(x,y).
- Konig and Terhal show that for one bit extractors there is a "good" POVM which is independent of the prefix This reduces the adversary to being a classical one.

Trevisan extractor is quantum proof [DeVidick, DePortmannVidickRenner]

- Given a one-bit extractor E, one way to construct a many-bit extractor is to apply E with many independent seeds. This blows up seed-length.
- Trevisan showed a smarter way to do this using weakly correlated seeds.
- Trevisan's proof also works in the quantum setting.

Our results

Our result – High min-entropy

For any $\beta < 1/2$ and $\epsilon \ge 2^{-n^{\beta}}$ there exists an explicit quantum-proof $((1-\beta)n,\epsilon)$ strong extractor $E: \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$

With:

seed length d=O(log n+log(1/ε)),
 output length m=Ω(n)

Our result – General min-entropy

For any $\beta < 1/2$ and $\epsilon \ge 2^{-k^{\beta}}$ there exists an explicit quantum-proof $((1-\beta)k,\epsilon)$ strong extractor $E: \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ For flat sources on 2^k elements With:

seed length d=O(log n+log(1/ε)),
 output length m=Ω(k)

Still open

Extend the result for all sources, not only flat on 2^k elements.

Would follow if, e.g.:
Every (X,ρ) with H_∞(X;ρ) ≥ k,
Can be expressed as a convex combination (X_i,ρ_i) with
Flat X_i, and,
H_∞(X_i,ρ_i) ≥ k.

Our result – Quantum storage

For any $\beta < 1/2$ and $\epsilon \ge 2^{-k^{\beta}}$ there exists an explicit quantum-proof (k,ϵ) strong extractor $E: \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ Against βk bounded storage With: \circ seed length $d=O(\log n+\log(1/\epsilon))$,

• output length $m = \Omega(k)$

High min-entropy

High min-entropy extractor. Entropy rate > 1/2

- The extractor splits the source X to two equal length parts.
- It applies a short-seed quantum-proof extractor (e.g., Trevisan) on one half, and extracts polylog(n) bits.
- It then applies a long-seed quantum-proof extractor on the other half, and for the seed uses the output of the previous step.

High min-entropy extractor

$E(x,(y_1,y_2))=E_2(x_2,E_1(x_1,y_1))$

Condensing to high minentropy

Lossless condensers – flat sources

A function C: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a $(n,k) \rightarrow_{\epsilon} (m,k)$ lossless condenser, if for every flat set X of size 2^k , For almost all seeds y, C(X,y) is almost one-to-one on X. Lossless condensers – general distributions

For such a function C, for every X with H_∞(X)≥ k we have C(X,U) is close to a distribution with k+d min-entropy. Lossless condensers – quantum proof, flat sources

If C: $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a (n,k) \rightarrow_{ϵ} (m,k) lossless condenser,

Then, for any (X,ρ) with • X flat on 2^{k_1} elements • $H_{\infty}(X;\rho) \ge k2$ (C(X,U), ρ) is close to a state (W', ρ ') with $H_{\infty}(W';\rho') \ge k2+d$.

One happy surprise

Classical extractors may fail against quantum adversaries.

Our simple analysis shows classical lossless condensers do not fail against quantum adversaries.

And an unlikely obstacle

Normally, higher min-entropy allows better extraction.

Here, we do not know how to deal with higher min-entropies...

Can that be a real obstacle?

Open problems

Still open

Is the following true:

Every (X,ρ) with H_∞(X;ρ) ≥ k,
Can be expressed as a convex combination (X_i,ρ_i) with
Flat X_i, and,
H_∞(X_i,ρ_i) ≥ k.

Stability of smooth min-entropy?

Is the following true?

If ρ_{ABC} is • ε close to ρ' with $H_{\omega}(A|C;\rho') \ge k$, and • ε close to ρ'' with $H_{\omega}(B|C;\rho'') \ge k$, Then, it is close to ρ''' with both $H_{\omega}(A|C;\rho''') \ge k$ and $H_{\omega}(B|C;\rho''') \ge k$