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Introduction



Randomness Extractors 

E: {0,1}n  {0,1}d  {0,1}m is a strong 

ε-extractor for (X,(X)) if 

| E(X,Ud)○Ud○(X) – Um+d(X)|tr < ε

E is a strong ε-extractor for Π if it is 

a strong ε-extractor for all (X,(X)) ∈ Π



Variants

Name (X,(X)) ∈ Π

extractor H(X) > k

Quantum-proof extractor H(X;) > k

Quantum-proof extractor
for flat sources

X is flat on 2k1 elements, 
H(X;) > k2

Quantum-proof extractor
against bounded storage

H(X) > k,  on b qubits

Classical extractors are not necessarily quantum proof. 

[GavinskyKempeKerenidisRazdeWolf]



Conditional min-entropy

Conditional guessing-entropy:

Hg(X;) = k   supM Pr[M((X)) = X] = 2-k

Conditional min-entropy:

H(X;) = -min min{ : X○(X)  2 I}

[KoenigRennerSchaffner]: same quantity!



Privacy amplification

 Quantum-proof extractors suffice for privacy 
amplification.

 Essential component in many QKD 
protocols.
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Previous results in a glance



Techniques for constructing 

classical extractors

Technique Reference (sample)

Norm-2 based (almost) Pairwise-ind [IIL,NZ,SZ]
Fourier [Folklore]

Source 
Reconstruction 

NZ – Trevisan
RM – TZS, SU, U

Expanding one 
bit to many bits

Trevisan

Condense+
high-entropy 
solution

Reconstruction based – [TUZ]
Algebraic – [GUV]



A sample of techniques for constructing 

quantum-proof extractors

Technique Reference (sample)

Norm-2 based (almost) Pairwise-ind,
[KonigMaurerRenner,
TomamichelSchaffnerSmithRenn
er] 
Fourier[FehrSchaffner]

(min(k,m)) 
seed length

Source 
Reconstructio
n 

NZ – Trevisan
RM – TZS, SU, U

O(log(n)) seed
Constant error

Expanding 
one bit to 
many bits

Trevisan [DeVidick, 
DePortmannVidickRenner]

O(log(n)) seed
k1-ε output 

Condense+
high-entropy 

What we do (try to do) here. Hope to get:
O(log(n)) seed
(k)  output 



One bit extractors are quantum 

proof [KonigTerhal]

 The challenge is that the adversary 
may choose a POVM based on 
E(x,y).

 Konig and Terhal show that for one 
bit extractors there is a “good” POVM 
which is independent of the prefix

This reduces the adversary to being 
a classical one.



Trevisan extractor is quantum proof 

[DeVidick, DePortmannVidickRenner]

 Given a one-bit extractor E, one way to 

construct a many-bit extractor is to apply E

with many independent seeds. This blows 

up seed-length.

 Trevisan showed a smarter way to do this 

using weakly correlated seeds.

 Trevisan’s proof also works in the quantum 

setting.



Our results



Our result – High min-entropy

For any  < 1/2 and ε ≥ 2-n

there exists an explicit quantum-proof 
((1-)n,ε) strong extractor 

E: {0,1}n  {0,1}d  {0,1}m

With:

 seed length d=O(log n+log(1/ε)),

 output length m=(n)



Our result –

General min-entropy

For any  < 1/2 and ε ≥ 2-k

there exists an explicit quantum-proof 
((1-)k,ε) strong extractor 

E: {0,1}n  {0,1}d  {0,1}m

For flat sources on 2k elements

With:

 seed length d=O(log n+log(1/ε)),

 output length m=(k)



Still open

Extend the result for all sources, 

not only flat on 2k elements.

Would follow if, e.g.: 

Every (X,) with H(X;) ≥ k, 

Can be expressed as a convex 
combination (Xi,i) with 

 Flat Xi, and,

 H(Xi,i) ≥ k.



Our result –

Quantum storage

For any  < 1/2 and ε ≥ 2-k

there exists an explicit quantum-proof 
(k,ε) strong extractor 

E: {0,1}n  {0,1}d  {0,1}m

Against k bounded storage

With:

 seed length d=O(log n+log(1/ε)),

 output length m=(k)



High min-entropy



High min-entropy extractor.

Entropy rate > 1/2

 The extractor splits the source X to two 

equal length parts.

 It applies a short-seed quantum-proof 

extractor (e.g.,Trevisan) on one half, and 

extracts polylog(n) bits.

 It then applies a long-seed quantum-proof 

extractor on the other half, and for the 

seed uses the output of the previous step.



High min-entropy extractor

Source

Logarithmic

seed

E(x,(y1,y2))=E2(x2,E1(x1,y1))

E
1

E
2



Condensing to high min-

entropy 



Lossless condensers –

flat sources

A function C: {0,1}n  {0,1}d  {0,1}m is a

(n,k) ε (m,k) lossless condenser,

if for every flat set X of size 2k,

For almost all seeds y,

C(X,y) is almost one-to-one on X.



Lossless condensers –

general distributions

For such a function C,

for every X with H(X)≥ k  

we have C(X,U) is close to a 
distribution with k+d min-entropy.



Lossless condensers –

quantum proof, flat sources

If C: {0,1}n  {0,1}d  {0,1}m is a

(n,k) ε (m,k) lossless condenser,

Then, for any (X,) with 

 X flat on 2k1 elements

 H(X;) ≥ k2

(C(X,U),) is close to a state (W’,’) with 
H(W’;’) ≥ k2+d.



One happy surprise

Classical extractors may fail against

quantum adversaries. 

Our simple analysis shows classical lossless 

condensers do not  fail against quantum

adversaries.



And an unlikely obstacle

Normally, higher min-entropy allows better

extraction. 

Here, we do not know how to deal with

higher min-entropies…

Can that be a real obstacle?



Open problems



Still open

Is the following true:

Every (X,) with H(X;) ≥ k, 

Can be expressed as a convex 
combination (Xi,i) with 

 Flat Xi, and,

 H(Xi,i) ≥ k.



Stability of smooth min-entropy?

Is the following true?

If  ABC is 

 ε close to ’ with H(A|C;’) ≥ k, and

 ε close to ’’ with H(B|C;’’) ≥ k,

Then, it is close to ’’’ with both 
H(A|C;’’’) ≥ k and H(B|C;’’’) ≥ k


